p-group, metabelian, nilpotent (class 5), monomial
Aliases: C32⋊C22, C8.8D8, D32⋊2C2, C16.3D4, SD64⋊1C2, C4.14D16, D16⋊2C22, M6(2)⋊1C2, Q32⋊2C22, C22.5D16, C16.10C23, C4○D16⋊2C2, C4.17(C2×D8), C8.49(C2×D4), (C2×C4).51D8, (C2×D16)⋊11C2, C2.16(C2×D16), (C2×C8).141D4, (C2×C16).32C22, 2-Sylow(PGammaL(2,289)), SmallGroup(128,995)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C32⋊C22
G = < a,b,c | a32=b2=c2=1, bab=a15, cac=a17, bc=cb >
Character table of C32⋊C22
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 8A | 8B | 8C | 16A | 16B | 16C | 16D | 16E | 16F | 32A | 32B | 32C | 32D | 32E | 32F | 32G | 32H | |
size | 1 | 1 | 2 | 16 | 16 | 16 | 2 | 2 | 16 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | ζ165-ζ163 | ζ165-ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | ζ167-ζ16 | orthogonal lifted from D16 |
ρ16 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | -ζ165+ζ163 | -ζ165+ζ163 | ζ165-ζ163 | ζ167-ζ16 | -ζ167+ζ16 | orthogonal lifted from D16 |
ρ17 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | -ζ167+ζ16 | -ζ167+ζ16 | ζ167-ζ16 | -ζ165+ζ163 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ18 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | ζ167-ζ16 | ζ167-ζ16 | -ζ167+ζ16 | ζ165-ζ163 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ19 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -ζ165+ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | ζ167-ζ16 | ζ167-ζ16 | ζ165-ζ163 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ20 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -ζ167+ζ16 | -ζ167+ζ16 | ζ165-ζ163 | ζ165-ζ163 | -ζ165+ζ163 | -ζ165+ζ163 | ζ167-ζ16 | ζ167-ζ16 | orthogonal lifted from D16 |
ρ21 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ165-ζ163 | ζ165-ζ163 | ζ167-ζ16 | ζ167-ζ16 | -ζ167+ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ22 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ167-ζ16 | ζ167-ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | ζ165-ζ163 | ζ165-ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | orthogonal lifted from D16 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | -2ζ165+2ζ163 | -2ζ1615+2ζ169 | 2ζ165-2ζ163 | 2ζ1615-2ζ169 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 2ζ1615-2ζ169 | -2ζ165+2ζ163 | -2ζ1615+2ζ169 | 2ζ165-2ζ163 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 2ζ165-2ζ163 | 2ζ1615-2ζ169 | -2ζ165+2ζ163 | -2ζ1615+2ζ169 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | -2ζ1615+2ζ169 | 2ζ165-2ζ163 | 2ζ1615-2ζ169 | -2ζ165+2ζ163 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(2 16)(3 31)(4 14)(5 29)(6 12)(7 27)(8 10)(9 25)(11 23)(13 21)(15 19)(18 32)(20 30)(22 28)(24 26)
(2 18)(4 20)(6 22)(8 24)(10 26)(12 28)(14 30)(16 32)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,16)(3,31)(4,14)(5,29)(6,12)(7,27)(8,10)(9,25)(11,23)(13,21)(15,19)(18,32)(20,30)(22,28)(24,26), (2,18)(4,20)(6,22)(8,24)(10,26)(12,28)(14,30)(16,32)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,16)(3,31)(4,14)(5,29)(6,12)(7,27)(8,10)(9,25)(11,23)(13,21)(15,19)(18,32)(20,30)(22,28)(24,26), (2,18)(4,20)(6,22)(8,24)(10,26)(12,28)(14,30)(16,32) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(2,16),(3,31),(4,14),(5,29),(6,12),(7,27),(8,10),(9,25),(11,23),(13,21),(15,19),(18,32),(20,30),(22,28),(24,26)], [(2,18),(4,20),(6,22),(8,24),(10,26),(12,28),(14,30),(16,32)]])
Matrix representation of C32⋊C22 ►in GL4(𝔽97) generated by
40 | 57 | 1 | 95 |
83 | 14 | 1 | 0 |
6 | 22 | 0 | 69 |
15 | 11 | 0 | 43 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
76 | 21 | 69 | 4 |
66 | 31 | 71 | 28 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
28 | 69 | 96 | 0 |
54 | 43 | 0 | 96 |
G:=sub<GL(4,GF(97))| [40,83,6,15,57,14,22,11,1,1,0,0,95,0,69,43],[0,1,76,66,1,0,21,31,0,0,69,71,0,0,4,28],[1,0,28,54,0,1,69,43,0,0,96,0,0,0,0,96] >;
C32⋊C22 in GAP, Magma, Sage, TeX
C_{32}\rtimes C_2^2
% in TeX
G:=Group("C32:C2^2");
// GroupNames label
G:=SmallGroup(128,995);
// by ID
G=gap.SmallGroup(128,995);
# by ID
G:=PCGroup([7,-2,2,2,-2,-2,-2,-2,141,1430,675,346,192,1684,851,242,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c|a^32=b^2=c^2=1,b*a*b=a^15,c*a*c=a^17,b*c=c*b>;
// generators/relations
Export
Subgroup lattice of C32⋊C22 in TeX
Character table of C32⋊C22 in TeX